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What is control theory ?

I Control theory is a branch of mathematics that studies the properties of
control systems i.e dynamical systems whose behavior can be modi�ed by
a command

I General Mathematical formalism of a control system :

ẋ(t) = f (t, x(t), u(t))

where
I t ∈ [t0tf ] is the time variable,
I x is the state variable de�ned on [t0tf ] and valued in a smooth variable M,
I u is a measurable bounded function de�ned on [t0tf ], valued in a smooth

variable U, called the control variable,
I f : R×M × U → TM is a smooth application.

I Goal : Bring the state variable from a given initial condition to a given
�nal condition i.e solve a boundary value problem{

ẋ(t) = f (t, x(t), u(t))
x(t0) = x0 ∈ M, x(tf ) = xf ∈ M.
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Schematic diagram

Figure: A dynamical system controlled by a feedback loop. We call the error the
di�erence between the reference (the desired output) and the the measured output.
This error is used by the controller to design a control on the system so that the
measured output gets closer to the reference.

Source : Wikipedia
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Questions that arise...

Controllability of a control system ? Is it possible to bring the state
variable from any initial condition to any �nal condition in a �nite time ?

I linear systems {
ẋ(t) = A(t)x(t) + B(t)u(t) + r(t)

x(t0) = x0

where x(t) Rn, u(t) Rn, A(t) ∈Mn(R), B(t) ∈Mn,m(R) and
r(t) ∈Mn,1(R) for all t ∈ [t0, tf ].

→ Kalman condition
constraints on the control ?

I nonlinear systems

→ way more di�cult
→ Poincaré's Reccurence theorem, Poisson-stability, linearization, local
controllability
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Questions that arise...

Stabilization of a control system ? How can we make a control system
insensitive to perturbations ?

Example : if (xe , ue) is an equilibrium point of the autonomous control
system

ẋ(t) = f (x(t), u(t))

i.e
f (xe , ue) = 0.

Does it exist a control u such that, for all ε > 0, there exists η > 0 such
that, for all x0 ∈ B(xe , η) and all t ≥ 0, the solution to the system{

ẋ(t) = f (t, x(t), u(t))
x(t0) = x0

satis�es ||x(t)− xe || ≤ ε ?
I linear systems → controlability
I nonlinear systems → Lyapunov functions
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Questions that arise...

Optimal control ? Can we determine the optimal solutions to a control
system for a given optimization criterion ?

→ Find the solution to the boundary value problem{
ẋ(t) = f (t, x(t), u(t))

x(t0) = x0 ∈ M0, x(tf ) = xf ∈ M1

which minimizes the cost

min
u(.)∈U

∫ tf

t0

f0(t, x(t), u(t))dt + g(tf , xf )

where f0 : R×M × U → R is smooth and g : R×M → R is continuous.∫ tf
t0

f0(t, x(t), u(t))dt : Lagrange cost

g(tf , xf ) : Mayer cost

see
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Origins of optimal control theory : the Brachistochrone

In 1696, Johan Bernoulli challenged his contemporary with the following
problem :

Consider two points A and B such that A is above B. Assume that a
object is located a the point A with no initial velocity and is only subjected
to the gravity. What is the curve between A and B so that the object
travels from A to B in minimal time ?

Remark : We know that the straight line is the shortest way between two
points. Is it the fastest way ?

NO !

The fastest way is a cycloid arc whose tangent line at the point A is
vertical.
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Origins of optimal control theory : the Brachistochrone

A short movie which illustrates this result.
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Applications of optimal control theory : Treatment of HIV

Model of the interaction of HIV and T-cells in the immune system

→ dT (t)

dt
= s1 −

s2V (t)

B1 + V (t)
− µT (t)− kV (t)T (t) + u1(t)T (t)

dV (t)

dt
=

g(1− u2(t))V (t)

B2 + V (t)
− cV (t)T (t).

where
I T (t) : Concentration of una�ected T cells
I V (t) : Concentration of HIV particles
I (u1, u2) : Control terms, action of the treatment
I s1 − s2V (t)

B1+V (t)
: proliferation of una�ected T cells

I µT (t) : natural loss of una�ected T cells
I kV (t)T (t) : loss by infection
I g(1−u2(t))V (t)

B2+V (t)
: proliferation of virus

I cV (t)T (t) : viral loss

9/32 Monique CHYBA, Gautier PICOT Optimal control and application to space transfers



Applications of optimal control theory : Treatment of HIV

Objective : maximizing the e�ciency of the treatment

→ max
(u1,u2)

∫ tf

0

T (t)− (A1u
2
1(t) + A2u

2
2(t))dt.

i.e

I maximizing the number of una�ected T cells during the treatment
I and minimizing the systemic cost of the treatment

A1, A2 : 2 constants/weights
A1u

2

1
(t) + A2u

2

2
(t) : severity of side e�ects of the treatment.

Results : The optimal control (u1, u2) can be written as a feeback control
i.e function of T and V . The optimal synthesis can be simulated
numerically.
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Applications of optimal control theory : a 2-sectors economy model

Context : An economy consisting of 2 sectors. The sector 1 produces
�nancial goods and the sector 2 produces consumption goods. Denote
x1(t) and x2(t) the productions in sectors 1 and 2 and u(t) the proportion
of investment allocated to sector 1.

Assumption : Increase in production in each sector is proportional to the
investment allocated to each sector.

Problem : Maximizing the total consumption over interval of time [0,T ].

→ Optimal control problem
ẋ1(t) = αu(t)x1(t)

ẋ2(t) = α(1− u(t))x2(t)

maxu(.)∈U
∫ T

0
x2(t)dt

x1(0) = a1, x2(0) = a2

where α is some constant of proportionality and a1 and a2 are the initial
productions in sectors 1 and 2.
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Applications of optimal control theory : a 2-sectors economy model

This problem can be solved analytically. The optimal solution (u∗, x∗1 , u
∗
2 )

is

u∗(t) =

{
1 if 0 ≤ t ≤ T − α

2
0 if T − α

2
< t ≤ T

x∗1 (t) =

{
a1eαt if 0 ≤ t ≤ T − α

2

a1eαT−2 if T − α
2
< t ≤ T

x∗2 (t) =

{
a2 if 0 ≤ t ≤ T − α

2

a2e(αt−αT+2)eαT−2

if T − α
2
< t ≤ T
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Identi�cation of the Fragmentation Role in the Amyloid Assembling
Processes and Application to their Optimization

Context : Apply techniques from geometric control to a kinetic model of
amyloid formation which will take into account the contribution of
fragmentation to the de novo creation of templating interfaces to design
optimal strategies for accelerating the current ampli�cation protocols, such
as the Protein Misfolding Cyclic Ampli�cation (PMCA). The objective is
to reduce the time needed to diagnose many neurodegenerative diseases.

Fibril fragmentation : Fibril fragmentation has been reported to enhance
the polymerization process underlying the behavior of some speci�c prions.
There is a signi�cant lack of knowledge concerning the fragmentation
process and the de novo generation of templating interfaces, both in the
mechanisms of its occurrence and its contribution to the acceleration of
the pathology.
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Protein Misfolding

I Transmissible spongiform encephalopathies
(TSEs)

I Aggregation-Fragmentation
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Compartmental model of amyloid formation

We denote by x l
i (t), l = 1, · · · , ki , the density of polymers of size i in

compartment l at a given time t. The corresponding rate of change due to
elongation is then described as follows :

r(u(t))
[ ki−1∑

s=1

τ l,si−1x
s
i−1 −

ki+1∑
r=1

τ r,li x l
i

]
.

The parameter τ l,si−1 is the growth rate of polymers of size i − 1 in

compartment s that grow in compartment l of polymers of size i , and τ r,li

is the growth rate of polymers of size i in compartment l that grow into
polymers of size i + 1 (in compartment r).

The control u(t) stands for the intensity of the sonicator.
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Compartmental model of amyloid formation

The fragmentation rate of change is expressed by the fact that polymers of
a given size and given compartment fragment into polymers of a given size
and compartment at di�erent rates :

u(t)
[
2

n∑
j=i+1

kj∑
s=1

βs
j κ

l,s
ij x

s
j − β l

i x
l
i

]
where β l

i (β
s
i ) represents the fragmentation coe�cient of polymer of size i

in compartment l (s) and the coe�cient κl,s
ij captures the fraction of

polymer of size j that fragment from compartment s into size i polymer in
compartment l .
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Model

To summarize, we propose a model of the form :

ẋ l
i (t) = r(u(t))

[ ki−1∑
s=1

τ l,si−1x
s
i−1(t)−

ki+1∑
r=1

τ r,li x l
i (t)
]
+

u(t)
[
2

n∑
j=i+1

kj∑
s=1

βs
j κ

l,s
ij x

s
j (t)− β l

i x
l
i (t)
]

It can be written in a matrix form :

ẋ(t) =
(
u(t)A+ r(u(t))B

)
x(t).

The growth matrix, B, and the fragmentation matrix, A, as well as vector x(t),
have a block structure with blocks corresponding to the di�erent compartments.
The parameters will be determined experimentally. The behavior inside each
compartment also needs to be determined. In particular the in vitro elongation
of the �brils appears to saturate after some time and the polymerization process
is then blocked. This saturation e�ect has to be understood and included in the
model → nonlinear, which raises new challenging mathematical questions.
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Optimization of ampli�cation protocols

I Since incubation of a disease triggered by prions can take place over very
long period of time, an important question is the optimization of the
templating, elongation, and polymerization processes to accelerate the
detection of the protein in an a�ected person : PMCA.

I Typically, during the PMCA the incubation phase (no sonication) is more
than 30 times the duration of the sonication phase (at a constant
frequency) and alteration of these two phases takes place over 48 hours.
This correspond to a bang-bang strategy with the control (sonication
intensity) switching a �nite number of times between its minimum and
maximum values.
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PMCA

Protein Misfolding Cyclic Ampli�cation

I protocol to amplify the quantity of aggregates

19/32 Monique CHYBA, Gautier PICOT Optimal control and application to space transfers



Optimal Control Problem

The general expression for our system is of the form :

ẋ(t) = [Au(t) + B(t, x(t))r(u(t))]x(t),

x(0) = x0 > 0,

where x = (x11 , · · · , xk1
1 , · · · , x

1
n , · · · , xkn

n ) ∈ Rm, m =
∑n

i=1 ki .

The matrix A is constant since we assume that the fragmentation
coe�cients stay constant throughout the protocol. However, the
elongation coe�cients might vary with time to re�ect the saturation
hypothesis. This implies that the matrix B is not constant but can depend
explicitly on t or on the current density of polymers x(t).

Optimal Cost : �nal density of polymers, c(x(T )) =
∑n

i=1(i
∑ki

j=1x
j
i (T )).
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Optimal Control Problem

We make the assumption that the function r is a decreasing convex function.
This will be checked experimentally, and adapted if it is necessary in further
work. Using a reparametrization and some assumptions on r , we can rewrite
the optimal problem as an a�ne single-input system :

ẋ(t) = f0(t, x(t)) + f1(t, x(t))u(t), (1)

x(0) = x0 > 0, (2)

min
umin≤u≤umax

−ψx(T ), (3)

where f0(t, x(t)) = B(t, x(t)) and f1(t, x(t)) = Ax(t) + aB(t, x(t)), a < 0.
Our optimal control problem is in Mayer form with �xed time T but not
constraints on the terminal state x(T ).
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2D Simulations
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3D Simulations
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Tools of optimal control theory

Optimal control theory is at the crossroad of

I Theory of Di�erential Equations/Dynamical Systems (Finding solutions to
di�erential systems, problem of existence and unicity of optimal solutions)

I Di�erential geometry (optimal synthesis strongly depends on the geometric
properties of the problem, modern theory of optimal control)

I Optimization

I Modeling (relevance of the way that an optimal control problem is set up)

I Numerical Analysis (numerical methods to approximate optimal solutions)

I Applications (solving real world problems)

24/32 Monique CHYBA, Gautier PICOT Optimal control and application to space transfers



Example of Application to space mechanics

Objective : use optimal control theory to compute optimal space transfers
in the Earth-Moon system

I time-minimal space transfers

I energy-minimal space transfers

First question : How to model the motion of a spacecraft in the
Earth-Moon system ?

I Neglect the in�uences of other planets

I The spacecraft does not a�ect the motion of the Earth and the Moon

I Eccentricity of orbit of the Moon is very small (≈ 0.05)
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The Earth-Moon-spacecraft system

The motion of the spacecraft in the Earth-Moon system can be modelled
by the planar restricted 3 body problem.

Description :

I The Earth (mass M1) and Moon (mass M2) are circularly revolving aroud
their center of mass G.

I The spacecraft is negligeable point mass M involves in the plane de�ned by
the Earth and the Moon.

I Normalization of the masses : M1 +M2 = 1

I Normalization of the distance :d(M1,M2) = 1.

Earth

Moon

spacecraft

G
-0.5 0.5

-0.5

0.5

Figure : The circular restric-
ted 3-body problem. The blue
dashed line is the orbit of the
Earth and the red one is the
orbit of the Moon. The trajec-
tory of spacecraft lies in the
plan deined by these two or-
bits.
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The Rotating Frame

Idea : Instead of considering a �xed frame {G ,X ,Y }, we consider a
dynamic rotating frame {G , x , y} which rotates with the same angular
velocity as the Earth and the Moon.

→ rotation of angle t

→ substitution (
X
Y

)
=

(
cos(t)x + sin(t)y
−sin(t)x + cos(t)y

)

→ simpli�es the equations of the model

Figure : Comparision between
the �xed frame {G ,X ,Y }
and the rotating frame
{G , x , y} .
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Equations of Motion

In the rotating frame

I de�ne the mass ratio µ = M2

M1+M2

I the Earth has mass 1− µ and is located at (−µ, 0) ;
I the Moon has mass µ and is located at (1− µ, 0) ;
I Equations of motion {

ẍ − 2ẏ − x = ∂V
∂x

ÿ + 2ẋ − y = ∂V
∂y

where
−V : is the mechanical potential

V =
1 − µ

%3
1

+
µ

%3
2

%1 : distance between the spacecraft and the Earth

%1 =
√

(x + µ)2 + y2

%2 :distance between the spacecraft and the Moon

%2 =
√

(x − 1 + µ)2 + y2.
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Hamiltonian formalism

Legendre transformation

(q1, q2) = (x , y), p = (p1, p2) = (q̇1 − q2, q̇1 + q2)

→ Equations of motion becomes an Hamiltonian system

q̇ =
∂H

∂p
(q(t), p(t)), ṗ = −∂H

∂q
(q(t), p(t))

where

H(q, p) =
1

2
‖p‖2 + p1q2 − p2q1 −

1− µ
%1
− µ

%2
+
µ(1− µ)

2
.

Remark :
dH

dt
=
∂H

∂q
q̇ +

∂H

∂p
ṗ =

∂H

∂q

∂H

∂p
− ∂H

∂p

∂H

∂q
= 0

→ The value of H is constant along a trajectory of the planar restricted
3-body problem

→ H is a �rst integral of the problem
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Hill Regions

There are 5 possible regions of motion, know as the Hill regions

Each region is de�ned by the value of the Hamiltonian H ( total energy of
the system)

Figure: The Hill regions of the planar restricted 3-body problem

Toplogy/Shape of the regions is determined with respect to the total
energy at the equilibrium points of the system
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Equilibrium points

Critical points of the mechanical potential

→ Points (x , y) where ∂V
∂x

= ∂V
∂y

= 0

I Euler points : colinear points L1,L2, L3 located on the axis y = 0, with

x1 ' 1.1557, x2 ' 0.8369, x1 ' −1.0051.

I Lagrange points : L4, L5 which form equilateral triangles with the primaries.

Figure: Equilibrium points of the planar restricted 3-body problem
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The controlled restricted 3-Body problem

Control on the motion of the spacecraft ?

→ Thrust/Propulsion provided by the engines of the spacecraft

→ control term u = (u1, u2) must be added to the equations of motion

→ controlled dynamics of the spacecraft{
ẍ − 2ẏ − x = ∂V

∂x
+ u1

ÿ + 2ẋ − y = ∂V
∂y

+ u2.

Setting q = (x , y , ẋ , ẏ)

→ bi-input system

q̇ = F0(q) + F1(q)u1 + F2(q)u2

where

F0(q) =


q3
q4

2q4 + q1 − (1− µ) q1+µ

((q1+µ)2+q2
2
)
3
2

− µ q1−1+µ

((q1−1+µ)2+q2
2
)
3
2

−2q3 + q2 − (1− µ) q2

((q1+µ)2+q2
2
)
3
2

− µ q2

((q1−1+µ)2+q2
2
)
3
2

 ,

F1(q) =
∂

∂q3
, , F2(q) =

∂

∂q4
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